
plutonium

Stable	Atomic mass	Mole
isotope		fraction
(none)		

Half-life of redioactive isotope
Less than 1 second

Important applications of stable and/or radioactive isotopes

Isotopes in nuclear research

1) ²³⁹Plutonium is easily made in nuclear reactors by bombarding ²³⁸uranium with neutrons. The ²³⁹Pu made by this reaction can itself be split by neutrons to release energy and is used for energy generation in nuclear reactors, which usually fission ²³⁵U in the reactor to produce two to three neutrons for the ²³⁸U or ²³⁹Pu to absorb.

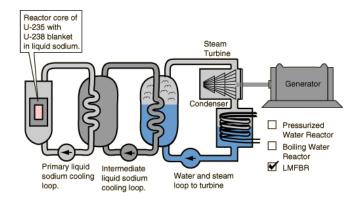


Figure 1: This is an illustration of a liquid metal fast breeder reactor which uses ²³⁵U and ²³⁸U to generate plutonium.

Isotopes in industry

- 1) ²³⁸Pu is used in radiothermal generators as a heat source to produce electricity. These radiothermal generators are used to power unmanned spacecraft and interplanetary probes that venture too far from the sun to use solar power, such as the Cassini and Galileo probes.
 2) ²³⁹Pu is used in nuclear reactors and weapons.
- 3) ²³⁸Pu has been used in the Apollo lunar missions as part of a nuclear battery. The SNAP-27 (systems nuclear auxiliary power) system produced approximately 75 W of electrical power at 30 VDC per unit. The energy source was a 2.5 kg rod of ²³⁸Pu providing thermal power of approximately 1250 W.
- 4) It is important to note that the plutonium produced as a by-product in a nuclear power reactor is created in its many isotopic forms, including ²³⁹Pu, ²⁴⁰Pu, ²⁴¹Pu, and ²⁴²Pu. This is known as "reactor-grade" plutonium. In contrast, "weapons-grade" plutonium contains almost pure (over 90%) ²³⁹Pu. ²³⁹Pu is created in a reactor that is specially designed and operated to produce ²³⁹Pu from uranium.

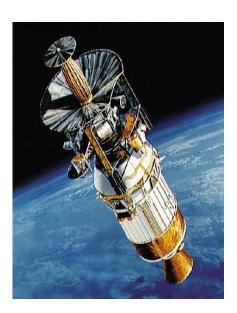


Figure 2: These are pictures of the Galileo (left) and Cassini probes (right). These are types of probes that are powered by radiothermal generators that use ²³⁸Pu.